1. Задача Евклида
Мул и осёл под вьюком, по дороге с мешками шагали. Жалобно охал осел, непосильною ношей придавлен. Это подметивший мул обратился к сопутчику с речью: «Что ж, старина, ты заныл и рыдаешь, будто девчонка? Нес бы вдвойне я, чем ты, если б отдал одну ты мне меру, если ж бы ты у меня лишь одну взял, то мы бы сравнялись». Сколько нес каждый из них, о геометр, поведай нам это.
Решение: I способ
Если x – груз мула, то (x-1) груз осла, увеличенный на, а следовательно, первоначальный груз осла был (x-2). С другой стороны, в два раза больше, чем груз осла, уменьшенный на 1, т.е.
. Т.о.,
.
Отсюда, груз мула и груз осла 7-2=5.
II способ (через систему линейных уравнений)
Обозначив через x поклажу осла, а через y – поклажу мула, сводим задачу к системе уравнений с двумя неизвестными
Или
Груз мула y=7, груз осла x=5.
2. Задача Диофанта (из трактата «Арифметика»)
Найти три числа так, чтобы наибольшее превышало среднее на данную часть наименьшего, чтобы среднее превышало меньшее на данную часть
наибольшего и чтобы наименьшее превышало число 10 на данную часть
среднего числа.
Решение: Исходя из условий задачи, составим систему
подставим 3-е уравнение в 1-е, получим
в первое уравнение вместо y подставим (3z-30), и рассмотрим только первое уравнение
Подставим z в 3 уравнение и найдем y
И найдем x из второго уравнения
Ответ: ,
,
3. Задача Китая, из трактата «Девять отделов искусства счета»
5 волов и 2 барана стоят таэлей, а 2 вола и 8 баранов стоят 8 таэлей. Сколько стоят отдельно вол и баран?
Решение: пусть x цена вола, а y – цена барана
Решение задачи сводиться к рассмотрению следующей системы уравнений
Следовательно, один вол стоит 2 таэля, а один баран таэля.
4. Задача из рассказа А.П. Чехова «Репетитор»
Купец купил 138 аршин черного и синего сукна за 540 рублей. Спрашивается, сколько аршин он купил того и другого, если синее сукно стоило 5 рублей за аршин, а черное – 3 рубля?
Решение: I способ условие задачи сводится к системе
63 – аршин синего сукна, 75 аршин черного сукна.
II способ Пусть синего сукна было x аршин, тогда черного аршин.
X=63 (аршина) – синего
138-63=75 (аршин) – черного.
Ответ: синего 63 аршина, черного 75 аршин.
5. Задача Леонардо Пизанского
Один говорит другому: «Дай мне 7 динариев, и я буду в 5 раз богаче тебя». А другой говорит: «Дай мне 5 динариев, и я буду в 7 раз богаче тебя». Сколько у каждого?
Прочие статьи:
Влияние педагогического стиля деятельности на характер и эффективность
педагогической импровизации
В результате анализа психолого-педагогической литературы мы пришли к выводу о зависимости использования импровизации учителем на уроке от педагогического стиля деятельности. Он выделяется на основании критериев методичности – импровизационности и эмоциональности – рассудительности. Наиболее оптимал ...
Содержательный смысл математического уравнения
Вникая в смысл слова «уравнение» мы понимаем, что оно выражает процесс уравнивания. Что именно уравнивается и зачем? По-видимому, уравнивать можно что-то с чем-то и именно об этом говорит тот факт, что уравнение выражается равенством двух частей. Но в чем состоит смысл уравнивания? Ведь это значит, ...
Проверка эффективности проделанной работы на формирующем этапе эксперимента
Для определения эффективности проделанной нами работы на формирующем этапе эксперимента был использован следующий диагностический материал. Задание 1. Перед каждым ребенком положили 2 листа бумаги. На одном с нарисованы в ряд кружочки, на другом изображены семена. Экспериментатор: Это болотце с коч ...