В то же время необходимо проверять знание формулировок, повторять их (например, определения, изученные на первых уроках: числовое выражение, значение выражения, выражение, которое не имеет смысла). Как же выйти из этого противоречия?
Любые вопросы типа "Что называется…? Как формулируется такая-то теорема?" легко заменить соответствующими упражнениями. Выполняя их, учащиеся и формулируют, и применяют определения, а значит, лучше понимают их и легче запоминают.
Если материал плохо понят, то он усваивается формально, запоминается неточно, искажения не замечаются и часто возникает иллюзия запоминания и усвоения.
Учащимся в возрасте 11-12 лет часто только кажется, что материал усвоен, а воспроизвести его они не могут или в лучшем случае воспроизводят его буквально, безжалостно пропуская и искажая его отдельные части.
Отрицательные явления, уменьшаются, если учащийся приучен к самоконтролю и в прошлом неоднократно сталкивался со случаями расхождения между кажущимся и фактически достигнутым уровнем понимания и запоминания. Следовательно, полезно создавать на уроках такие ситуации, когда учащиеся затрудняются ответить на вопрос, кажущийся им очень простым. Такие вопросы заинтересовывают учащихся, способствуют развитию самоконтроля (например, с какими числами мы познакомились в 5-6 классе, приведите примеры; юмор подобных математических представлений кроется в том, что ошибка замаскирована и не сразу бросается в глаза.
Докажем, что 4=-4. На доске неоспоримое равенство:
16=16
(4)2=(-4)2
Представим числа 4 и -4 в виде суммы, т. е.
(1+3)2=(-6+2)2
Дальнейший ход "комедии" состоит в преобразованиях. Видим, что показатель степени один и тот же и выражения равны, следовательно, делаем вывод, что
1+3=-6+2,
но выполняя вычисления, получаем
4=-4.
В чём ошибка?
Понимание затрудняется, если установка на полноту и точность запоминания появляется до осознания материала в целом. В остальных случаях установка на запоминание способствует лучшему пониманию.
В психологии различают произвольное и непроизвольное запоминание. Запоминание называется произвольным, если наши усилия направляются намеренно поставленной задачей запомнить данный материал. Когда такая задача не ставится и материал запечатлевается в памяти попутно, в результате какой-то другой деятельности, говорят о непроизвольном запоминании.
В учебном процессе важную роль играют оба вида запоминания. Л. В. Занков, Д. Н. Узнадзе и другие советские психологи выявили условия эффективности произвольного запоминания. В психологии установлены также и другие условия эффективности произвольного запоминания: 1) активная мыслительная деятельность над материалом (но не многократное, "механическое" повторение – "зубрёжка"); 2) усилия, направленные на понимание.
(Основная закономерность памяти). Если соблюдается 2 условия: учащийся выполняет над материалом активную мыслительную деятельность и эта деятельность способствует углубленному пониманию материала, то происходит успешное запоминание материала (произвольное или непроизвольное.)
Известные советские методисты В. М. Брадис, В. В. Репьев и др. постоянно подчёркивали, что хорошее усвоение материала обеспечивается не многократным и неизменным повторением, заучиванием, а активной работой над материалом. Закономерности лишь помогают нам убедиться в справедливости рекомендаций традиционной методики математики, отчётливее понять необходимость рекомендаций. В. М. Брадис многократно подчёркивал необходимость установления взаимосвязей между отдельными вопросами изученной темы и её связей с другими разделами воспроизведению материала учебника, советуя спрашивать доказательства по изменённому чертежу, с другими буквенными обозначениями и т. д Указывал на желательность формировать умения составлять план изучаемого материала, выявлять его основную идею. Выделял основной способ изучения нового материала – учит их применению к решению задач. Советовал учить умению приводить примеры и контрпримеры к изучаемым понятиям.
Прочие статьи:
Методика С.А. Мироновой
С.А. Миронова предложила систему преодоления заикания у дошкольников в процессе прохождения в целом программы средней, старшей и подготовительной групп детского сада. Коррекционное воздействие на заикающихся детей осуществляется на занятиях (как основной форме образовательной работы в детском саду) ...
Творчество как феномен человеческой деятельности
Анализ проблемы развития творческих способностей во многом будет предопределяться тем содержанием, которое мы будем вкладывать в это понятие. Очень часто в обыденном сознании творческие способности отождествляются со способностями к различным видам художественной деятельности, с умением красиво рис ...
Содержательный смысл математического уравнения
Вникая в смысл слова «уравнение» мы понимаем, что оно выражает процесс уравнивания. Что именно уравнивается и зачем? По-видимому, уравнивать можно что-то с чем-то и именно об этом говорит тот факт, что уравнение выражается равенством двух частей. Но в чем состоит смысл уравнивания? Ведь это значит, ...