Урок 8
Тема урока: Свойства действий над числами
Цели урока:
а) образовательная: повторить основные свойства сложения и умножения чисел; научить применять эти свойства при вычислениях наиболее рациональным способом; повторять и закреплять правила сложения, вычитания, умножения и деления рациональных чисел.
б) развивающая: формирование и развитие мыслительных операций, форм мышления, интерес к изучаемой теме;
в) воспитывающая: воспитать аккуратность, дисциплинированность, чувство ответственности.
Тип урока: Урок усвоения новых знаний.
Ход урока:
I. Организационный момент:
Объявление темы урока. Постановка образовательной цели.
II. Устная работа:
1. Прочитайте неравенство:
а)
б)
в)
г)
д)
е)
2. Верно ли неравенство:
а)
при x= 9;-30,7; 25;
б)
при y=2,3; 2,4; 2,5; 2,6; 2,7; 2,9?
3. Вычислите наиболее удобным способом:
а)
в)
б)
г)
Какими свойствами вы пользовались?
III. Работа по учебнику.
1. Записать основные свойства сложения и умножения:
1) Переместительное свойство:
2) Сочетательное свойство:
3) Распределительное свойство:
2. Рассмотрим примеры:
Пример 1 Вычислим сумму 1,23+13,5+4,27.
Для этого удобно объединить первое слагаемое с третьим. Получим:
1,23+13,5+4,27=(1,23+4,27)+13,5=5,5+13,5=19.
Из переместительного и сочетательного свойств умножения следует: в любом произведении можно как угодно переставлять множители и произвольным образом объединять их в группы.
Пример 2 Найдём значение произведения 1,8·0,25·64·0,5.
Объединив первый множитель с четвёртым, а второй с третьим, будем иметь:
1,8·0,25·64·0,5=(1,8·0,5)·(0,25·64)=0,9·16=14,4.
Распределительное свойство справедливо и в том случае, когда число умножается на сумму трёх и более слагаемых.
Например, для любых чисел a, b, c и d верно равенство
a(b+c+d)=ab+ac+ad.
Мы знаем, что вычитание можно заменить сложением, прибавив к уменьшаемому число, противоположное вычитаемому:
a-b=a+(-b).
Это позволяет числовое выражение вида a-b считать суммой чисел a и -b, числовое выражение вида a+b-c-d считать суммой чисел a, b, -c, -d и т. п. Рассмотренные свойства действий справедливы и для таких сумм.
Пример 3 Найдём значение выражения 3,27-6,5-2,5+1,73.
Прочие статьи:
Теоретические основы метода пропедевтики акустической дисграфии через дидактическую
игру
ОНР (общее недоразвитие речи) - различные сложные речевые расстройства, при которых нарушено формирование всех компонетов речевой системы, т.е. звуковой стороны (фонетики) и смысловой стороны (лексики, грамматики). Общее недоразвитие речи может наблюдаться при сложных формах детской речевой патолог ...
Понятие социального развития в современной психолого-педагогической
литературе
задержка психологический социальный дошкольный Социальное развитие (от лат. Socialis – общественный) – это процесс вхождения индивида в общество, социализации личности, активного усвоения им социального опыта, социальных ролей, норм, ценностей, необходимых для успешной жизнедеятельности в данном об ...
Методика Н.А. Чевелевой
В логопедических занятиях с заикающимися школьниками в настоящее время используются в основном методические рекомендации, предложенные для работы с детьми дошкольного возраста (для младших школьников) или с подростками и взрослыми (для старших школьников). Например, Н.А. Чевелева в своем пособии пр ...