Решение алгебраических уравнений в детском саду с помощью взвешивания шоколадок

Страница 2

После этого можно изучить решение уравнений:, решение которых приводит к новым количествам: квадрируемым и неквадрируемым. Этих двух примеров вполне достаточно, чтобы ребенок, тяготеющий к математике, заинтересовался общей проблемой квадрируемости конечных количеств. Такой проблемный подход позволяет на решении уравнений познакомиться с иррациональными числами. Кроме того, ребенок находит квадрат числа когда считает кубики в квадрате и извлекает квадратный корень когда считает палочки в квадрате.

Решение алгебраического уравнения в натуральных числах

Не ограничивая общности, мы рассмотрим более простое уравнение. Из способа решения этого уравнения станет понятен общий метод. Положим 16 кубиков на правую чашку весов. Затем поставим вопрос: Нужно найти такие одинаковые по величине 2 куба из квадратов, чтобы, положив их на левую чашку весов, весы были в равновесии. Из скольких квадратов сложены эти кубы? Понятно, что решением будет число 2 – количество квадратов в кубе. Теперь рассмотрим уравнение и вопрос поставим тот же самый. Выясняется что таких кубов нет вообще. Итак, в одном случае равновесие получается, а в другом не получается. Рассмотрим более общее уравнение. Попытаемся понять: когда такие кубы найти можно и когда нельзя. Оказывается, что таких случаев много и они приводят ребенка к тому, что в одних случаях равновесие достигается, а в других не достигается. В этом смысле, уравнение не всегда имеет решение. Значит, прежде чем его решать нужно выяснить: имеет оно решение или нет?

Так ребенок приходит ко второй проблеме: составление конечного количества в форме куба. Решение уравнения породило 2 вида конечных количеств: кубируемых (элементы количества образуют куб) и некубируемых (элементы количества не образуют куб). Заметим, что никакими символами мы не пользовались опять и пришли к иррациональным числам, которые представляют некубируемые количества.

После этого можно изучить решение уравнений:, решение которых приводит к новым количествам: кубируемым и некубируемым. Этих двух примеров вполне достаточно, чтобы ребенок, тяготеющий к математике, заинтересовался общей проблемой кубируемости конечных количеств.

Такой проблемный подход позволяет на решении уравнений познакомиться с иррациональными числами уже нового типа. Кроме того, ребенок находит куб числа когда считает кубики в кубе и извлекает кубический корень когда считает квадраты в кубе.

Представление о квадрируемости и кубируемости конечного количества подводят ребенка к проблеме меры: измерять величину плоских и объемных тел с помощью единиц измерений – кубиков.

1. В статье впервые дан содержательный смысл математического уравнения.

2. В статье приводится оригинальный конструктор, который становится средством конструирования знаний о делимости конечных количеств, а также их квадрируемости и кубируемости.

3. В статье рассмотрены конкретные примеры, представляющие пропедевтику алгебры в детском саду.

Страницы: 1 2 


Прочие статьи:

Основные формы проявления вербальной агрессии в школьной речевой среде
Проблема описания и классификации основных форм речевой агрессии в настоящее время является практически не разработанной. Немногочисленные попытки, предпринимавшиеся в данном направлении, ограничивались либо какой-то одной сферой речевого общения (А.П. Сковородников), либо затрагивали слишком узкий ...

Гуманистическая педагогика в профессиональном образовании
Профессиональное образования обычно рассматривается как овладение определёнными навыками по конкретной профессии и специальности. Однако, как показывает практика, в процессе профессионального образования обучаемый получает гораздо более широкой комплекс информации и навыков, а не только знания и кв ...

Выявление нарушений оптико – пространственных функций у младших школьников с оптической дисграфией
Экспериментальное изучение проводилось с сентября по декабрь 2004 года на базе общеобразовательной школы № 4 п. Кундур с учащимися 1-2 классов. Исследование проводилось в несколько этапов, констатирующий, формирующий, контрольный в количестве 20 человек. 1 этап констатирующий, цель данного этапа: р ...

Меню сайта

Copyright © 2025 - All Rights Reserved - www.covereducation.ru